研发报告详细内容

美团队研发高效深紫外LED,创业界最低波长纪录

      材料来源:LEDinside

 

 

素有杀手之称的UV-C紫外光,波长仅200到280奈米、能量高,可以穿透病毒、细菌、真菌和尘螨的薄膜,攻击DNA并歼灭这些有害的有机体。

自丹麦教授Niels Finsen发现用紫外线可治疗结核病后,人类利用紫外线杀菌已经有超过百年历史。但目前使用的深紫外线灯不只体积庞大、效率低,而且皆含水银,对环境有害。

美国康乃尔大学的研究团队,最新就研发出一种体积小且更环保的深紫外线LED光源,并创下目前业界deep-UV LED最低波长的纪录。

研究人员采用原子级控制界面的氮化镓(GaN)与氮化铝(AlN)单层薄膜为反应作用区域,成功发射出波长介于232到270奈米的深紫外LED。这种232奈米的深紫外线,创下使用氮化镓为发光材料,所发出的光线波长最短记录。之前的记录是由日本团队创下的239奈米。

研究论文《MBE-grown 232-270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures》于1月27号发表于《应用物理快报》期刊(Applied Physics Letters)网站。

提高紫外线LED效率

目前紫外线LED最大瓶颈就是发光效率,可以由三个方面来衡量:

1. 注入效率:注入反应作用区域的电子通过装置的比例。

2. 内量子效率(IQE):反应作用区域中所有电子产生光子或紫外线的比例。

3. 出光效率:反应作用区域中产出的光子比例,这些光子可以从装置中取出,而且是可以利用的。

论文作者之一SM (Moudud) Islam博士表示:「如果上述三个方面的效率都达到50%,相乘起来只有八分之一,等于发光效率已经降到12%。」

在深紫外线波段,这三方面的效率都很低,但研究团队发现,利用氮化镓取代传统的铝氮化镓,可以提高内量子效率和出光效率。

而为了提高注入效率,研究团队采用之前开发出的技术,在正极(电子)和负极(电洞)载体区域,采用极化感应掺杂法来实现。

研究发展

在成功提升深紫外LED的发光效率后,研究团队的下一步是将光源整合到装置内,朝上市的目标迈进。深紫外光的应用领域包含食物保鲜、假钞辨别、光触媒、水的净化杀菌等等。


上一篇:剑桥大学研究人员发现L... 下一篇:延续摩尔定律?MIT研发...